A Performance Study of Diffusive vs. Remapped Load-Balancing
Schemes *

K. Schloegel G. Karypis V.Kumar
Dept. of Comp. Sci. & Eng.
Army HPC Research Center

University of Minnesota
Minneapolis, MN 55455

Abstract

For a large class of irregular grid applications, the
computational structure of the problem changes in an
incremental fashion from one phase of the computa-
tion to another. FEventually, as the graph evolves,
it becomes necessary to correct the partition in ac-
cordance with the structural changes in the computa-
tion. Two different types of schemes to accomplish this
task have been developed recently. In one scheme, the
graph is partitioned from scratch and then the result-
ing partition is remapped intelligently to the original
partition. The second type of scheme uses a multi-
level diffusion repartitioner. In this paper, we conduct
a comparison study on repartitioning via intelligent
remapping versus repartitioning by diffusion. We show
that multilevel diffusion algorithms generally produce
significantly lower data migration overhead for adap-
tive graphs in which low magnitude localized or non-
localized imbalances occur and for graphs in which
high magnitude imbalances occurs globally through-
out the domains than partitioning from scratch and
remapping the resulting partition. We show that for
the class of problems in which high magnitude imbal-
ances occur in localized areas of the graph, partition-
ing from scratch and remapping the resulting parti-
tion will result in higher quality partitions than dif-
fusion schemes, while obtaining data migration over-
heads which are comparable to those obtained by dif-
fusive schemes. Finally, we show that the run times of
the various schemes are all similar.

*This work was supported by NSF CCR-9423082, by
Army Research Office contract DA/DAAH04-95-1-0538, by
Army High Performance Computing Research Center coop-
erative agreement number DAAHO04-95-2-0003/contract num-
ber DAAH04-95-C-0008, by the IBM Partnership Award, and
by the IBM SUR equipment grant. Access to computing fa-
cilities was provided by AHPCRC, Minnesota Supercomputer
Institute. Related papers are available via WWW at URL:
http://www.cs.umn.edu/~karypis

R. Biswas L. Oliker
NASA Ames Research Center
Mail Stop T27A-1
Moffett Field, CA 94035

1 Introduction

Mesh partitioning is an important problem which
has applications in many areas, including scien-
tific computing. In irregular mesh applications, the
amount of computation associated with a grid point
can be represented by the weight of its associated ver-
tex. Similarly, the amount of runtime interaction re-
quired between two grid points can be represented by
the weight of the edge between the associated vertices.
Efficient parallel execution of these irregular grid ap-
plications requires the partitioning of the associated
graph into p parts with the objective that the total
number of edges cut by the partitions (hereafter re-
ferred to as edge-cut) is minimized, and subject to the
constraint that each partition has an equal amount of
total vertex weight. Since the weight of any given edge
represents the amount of communication required be-
tween nodes, minimizing the number of edges cut by
the partition tends to minimize the overall amount
of communication required by the computation, while
requiring that each partition has the same amount of
vertex weight ensures load balance. This problem has
been well defined and discussed in previous work [3, 5].

For a large class of irregular grid applications, the
structure of the problem changes in an incremental
fashion from one phase of the computation to another.
For example, in adaptive meshes [2], areas of the orig-
inal graph are selectively coarsened or refined in order
to accurately model the dynamic nature of the prob-
lem. The adapted meshes can be represented by ap-
propriately modifying the weights of the vertices and
edges of the original graph. Eventually, as the graph
evolves, it becomes necessary to correct the partition
in accordance with the structural changes in the com-
putation and to migrate a certain amount of computa-
tion between processors. Thus, we need a repartition-
ing algorithm to redistribute the adapted graph. This

algorithm should satisfy the following constraints.

1. It robustly balances the graph. Failure to
balance the graph will lead to load imbalance,
which will result in higher parallel run time. In
order to make the repartitioning algorithm gen-
eral, it must be able to balance graphs from a
wide variety of application domains.

2. It is fast. The computational cost of reparti-
tioning should be inexpensive since it is done fre-
quently. Also, since the problem studied in this
paper is relevant only in the parallel context, the
repartitioning algorithm should be parallelizable.

The repartitioning algorithm also needs to satisfy
the following objectives.

1. It minimizes edge-cut. The redistributed
graph should have a small edge-cut to minimize
communication overhead in the application.

2. It minimizes vertex migration time. Once
the mesh is repartitioned, and before the com-
putation can begin, data associated with the mi-
grated vertices also needs to be moved. In many
adaptive computations, the data associated with
each vertex is very large. The time for movement
of the data can therefore dominate the overall run
time, especially if the mesh is adapted frequently.

Partitioning the graph from scratch and then intel-
ligently remapping the resulting partition is one way
to meet the above criteria. Various algorithms which
do so are described in [1]. Here, the imbalanced graph
is partitioned from scratch using one of the multilevel
graph partitioning algorithms described in [4, 5]. The
resulting partition is then intelligently mapped to the
processors in order to reduce the amount of vertex mi-
gration required. In [6], a simple greedy remapping al-
gorithm is described and shown to obtain near-optimal
results on application graphs.

Another way to meet the above criteria is through
diffusive repartitioning. Multilevel diffusion schemes
have been developed that incrementally construct a
new partition of the graph [7, 8]. These schemes gen-
erally have three phases: a graph coarsening phase, a
diffusion phase, and a multilevel refinement phase.

In the graph coarsening phase, these algorithms at-
tempt to coarsen the input graph recursively by col-
lapsing matched vertices into a single vertex on the
next coarser graph. Vertices are matched together by
computing a maximal set of independent edges. In
the diffusion phase, the coarsest (and hence smallest)

graph is balanced by incrementally modifying the in-
put partition. By beginning this process on the coars-
est graph, these algorithms are able to move large
chunks of well-connected vertices in a single step.
Thus, the bulk of the work required to balance the
graph is done quickly. Eventually, due to the coarse-
ness of the graph, an incremental diffusion process may
not be able to improve the load balance. At this point,
either refinement is begun on the current graph or the
partition is projected to the next finer graph and an-
other round of diffusion begins. In these algorithms,
diffusion may be directed globally or locally. Once
the partition is balanced, multilevel refinement is per-
formed in order to improve the quality of the parti-
tion (which may have been upset during diffusion.) In
multilevel refinement, border vertices from the coars-
est graph are selected in some order. Each vertex is
examined to determine if migrating it to an adjacent
domain® will accomplish the primary objective (usu-
ally to reduce the edge-cut) while maintaining the bal-
ance constraint. If this is so, the switch is made. Once
a local minima in this search space is reached for the
current graph, the partition is projected to the next
finer level graph and this refinement process begins
again.

The effectiveness of repartitioning algorithms quite
often is determined by how successful they are in
load balancing the computations while minimizing the
edge-cut as well as the cost associated in redistribut-
ing the load in order to realize the new partitioning.
Two metrics that are widely used [6, 7] for measuring
this redistribution cost are TOTALV which measures
the total volume of data moved among all processors,
and MAXV which measures maximum flow of data to
or from any single processor. Specifically, TOTALV is
defined as the sum of the sizes of the vertices which
change domains as the result of repartitioning, while
MAXYV is defined as the maximum of the sums of the
sizes of those vertices which migrate into and out of
any one domain as a result of repartitioning.

2 Experimental Results

We tested our parallel repartitioning algorithms on
a Cray T3E-1200 with 128 processors. Each processor
on the T3E-1200 is a 600 MHz Dec Alpha (EV5). The
processors are interconnected via a three dimensional
torus network that has a peak unidirectional band-
width of 450 bytes per second, and a small latency. We

!In this paper, we refer to a k-way partition as being com-
posed of k disjointed domains.

used Cray’s MPI library for communication. Cray’s
MPT achieves a peak bandwidth of 200 MBytes and
an effective startup time of 30 microseconds.

We evaluated the performance of the parallel repar-
titioning algorithms described above on syntheti-
cally generated adaptive meshes, derived from three
medium to large size 3D finite element meshes, on 32,
64, and 128 processors. The characteristics of the cor-
responding dual graphs of these meshes are described
in Table 1. Our synthetically generated problems sim-
ulate the process of mesh adaptation by changing the
weight of the vertices and the edges of the graph. The
weight of some of the vertices was changed from one
(prior to adaptation) to a number greater than one
(indicating the degree of adaptation). The weight of
edges between adapted vertices was also changed to re-
flect the higher degree of connectivity in the adapted
graph. For every edge with incident vertices v; and
v;, its weight was set to (min(w;,w;))?/® (where w; is
the weight of vertex v;). Note that this edge-weighting
model tries to capture the face connectivity of 3D finite
element meshes. For each of these synthetically gen-
erated graphs, parallel repartitioning algorithms are
used to compute a new partitioning such that the sum
of the weight of the vertices assigned to each processor
is the same.

Graph Name | Num. of Vertices | Num. of Edges
MRNGB 1017253 2015714
MRNGC 4039160 8016848
MRNGD 7833224 15291280

Table 1: The various graphs used in the experiments.

For each of the three meshes and for each proces-
sor configuration, we generated two types of adaptive
meshes, TYPEA and TYPEB. Meshes of TYPEA at-
tempt to simulate the situation in which the mesh
is adapted at various regions throughout the mesh,
whereas meshes of TYPEB attempt to simulate the sit-
uation in which the adaptation occurs in a small region
of the mesh. For both TYPEA and TYPEB meshes on
p processors, we first computed a p-way partitioning of
the graph (using the parallel k-way graph partitioner
implemented in PARMEIIS), and then redistributed the
graph according to this partitioning. This became the
initial partitioning that we used to adjust the weight
of the vertices to emulate the effect of adaptation.

For meshes of TYPEA, the weights of the vertices
were changed as follows. Each processor generated a
random number r between zero and 100, then it ran-

domly selected % of its vertices, and set their weight
to a. The weight of the remaining vertices was set to
one. For meshes of TYPEB, the weights of the vertices
were changed as follows. Each processor generated a
random number 7 between zero and p — 1, and then
for the processors in which r was less than 0.05p, the
weight of all the vertices in these processors was set to
a. The weight of the remaining vertices was set to one.
Note that the expected number of processors that will
increase the weight of its vertices is 1.6, 3.2, and 6.4
for 32, 64, and 128 processors, respectively. For both
TYPEA and TYPEB problems, we let « take the values
of 2, 5, 10, 20, 30, and 40. These synthetically gener-
ated graphs are then used as the input to the parallel
repartitioning algorithms described in [6, 7] and im-
plemented in PARMEIS. In all of our experiments, a
graph that has less than 5% load imbalance is assumed
to be well balanced. Also, in all of our experiments,
the cost to migrate a vertex between processors is as-
sumed to be proportional to its weight.

The parallel implementations which we used for
the experiments are all from PARMENS. That is,
PARMEILS implements the undirected diffusion al-
gorithm described in [7] in the subroutine PARU-
AMETIS, the directed diffusion algorithm in PAR-
DAMETIS, and the intelligent greedy remapping al-
gorithm in PARPAMETIS.

In order to compare the three schemes we graph-
ically depict the results in the sequence of graphs
shown in Figs. 1-6. In particular, Fig. 1 compares
the quality in terms of edge-cut and ToTALV pro-
duced by the two multilevel diffusion schemes (PARU-
AMETIS and PARDAMETIS) relative to partitioning
from scratch and then performing a greedy remapping
(PARPAMETIS) for TYPEA experiments in which a
was set to 2, 5, and 10. For each experiment, we com-
puted the ratio of the edge-cut and TOTALV produced
by the diffusion algorithms to that of PARPAMETIS
and plotted it using a bar chart.

Performance on Slightly to Moderately

Adapted Graphs The experiments shown in Fig. 1
simulate a low to moderate degree of adaption taking
place globally throughout the adapted graph. Fig. 1
shows that the edge-cuts obtained by the multilevel
diffusion algorithms were, in general, 0% to 10% higher
than those obtained by PARPAMETIS. Furthermore,
the degradation in edge-cut for the diffusion schemes
tended to increase with «. Thus, as the level of
imbalance increased, PARPAMETIS did an increas-
ingly better job than either PARUAMETIS or PAR-
DAMETIS in minimizing the edge-cut. The TOTALV

produced by both of the diffusion schemes is con-
siderably less than that obtained by PARPAMETIS.
In general, diffusion resulted in TOTALV which is
15% to 30% that produced by the intelligent remap-
ping scheme. As the level of imbalance increased,
the difference in TOTALV results tended to decrease.
Comparing PARUAMETIS with PARDAMETIS, the
edge-cut and TOTALV results are generally very sim-
ilar (within 5%). However, PARUAMETIS tended
to obtain slightly lower TOTALV results than PAR-
DAMETIS.

The experiments shown in Fig. 2 simulate a low
degree of adaption taking place in localized areas
of the adapted graph. Fig. 2 shows that the edge-
cuts obtained by the multilevel diffusion algorithms
were, in general, 0% to 20% higher than those ob-
tained by PARPAMETIS. Again, the degradation
in edge-cut for the diffusion schemes tended to in-
crease with a. The TOTALV produced by both
of the diffusion schemes is again considerably less
than that obtained by PARPAMETIS. Here, diffu-
sion resulted in TOTALV which is 10% to 70% of
that produced by PARPAMETIS. Furthermore, as the
level of imbalance increased, the difference in To-
TALV results tended to decrease dramatically. This
indicates that as the level of localized imbalance
increases, PARPAMETIS’s performance increasingly
approaches that of the diffusion algorithm with re-
spect to ToTALV. Comparing PARUAMETIS with
PARDAMETIS, the edge-cut and TOTALV results are
again similar (usually within 4-6%).

In summary, for this class of problems, the results
indicate that multilevel diffusion can significantly re-
duce the amount of total vertex migration required
to realize the new partition while maintaining quality
in terms of edge-cut which is comparable to that of
intelligent remapping algorithms.

Performance on Highly Adapted Graphs The
experiments shown in Fig. 3 simulate a high degree of
adaption taking place globally throughout the adapted
graph. Fig. 3 shows that the edge-cuts obtained by the
multilevel diffusion algorithms were, in general, 20% to
30% greater than those obtained by PARPAMETIS.
Again, the degradation in edge-cut for the diffusion
schemes tended to increase with a. The TOTALV pro-
duced by both of the diffusion schemes is consider-
ably less than that obtained by PARPAMETIS. Dif-
fusion resulted in TOTALV which is 30% to 40% that
produced by the intelligent remapping scheme. Here
however, the relative TOTALV results remain constant
(independent of a) between the diffusion algorithms

and PARPAMETIS. Comparing PARUAMETIS with
PARDAMETIS, we again see only a slight difference
among the schemes.

The experiments shown in Fig. 4 simulate a high
degree of adaption taking place in localized areas of
the adapted graph. Fig. 4 shows that the edge-cuts
obtained by the multilevel diffusion algorithms were,
in general, 20% to 30% greater than those obtained
by PARPAMETIS. Notice that for three of the exper-
iments, the edge-cuts obtained by the diffusion algo-
rithms were 58% to 98% higher than those obtained
by PARPAMETIS. This is because in these experi-
ments, the diffusion algorithms failed to balance the
graphs to within 5%. Because of this, multilevel re-
finement never began, and so the edge-cut quality suf-
fered. Fig. 4 also shows that the TOTALV produced
by PARPAMETIS is generally similar or lower than
that produced by the diffusion algorithms. This is es-
pecially true of the highly imbalanced problems. Note,
these results indicate that for this class of problems,
PARPAMETIS is more effective in reducing both the
edge-cut and the TOTALV than multilevel diffusion
algorithms.

MAXV Results Fig. 5 gives the relative MAXV
performance of the three schemes for TYPEA ex-
periments. Results show that, in general, the dif-
fusion schemes produced much lower MAXV re-
sults than PARPAMETIS. Specifically, the MaxV
results obtained by the multilevel diffusion algo-
rithms were about 20% to 70% of those obtained by
PARPAMETIS.

Fig. 6 gives the relative MAXV performance of the
three schemes for TYPEB experiments and shows that
the diffusion schemes again produced lower MAXYV re-
sults, in general, than PARPAMETIS. However, here
there was a convergence point as « increased in which
all three algorithms produced generally similar MAXV
results. This is because the MAXV of these problems is
dominated by the amount of vertex weight that needs
to move out of the few overbalanced domains. This
migration is required in order to balance the graph,
and so becomes the lower bound for MAXV.

Run Time Results Table 2 gives some sample data
points with respect to the execution times of the vari-
ous algorithms. All of these results are from the largest
graph, MRNGD. Table 2 shows that the run times of
all of the schemes are quite fast. Also, the run times
are very similar among the schemes. Notice, however,
that the diffusion algorithms (labeled UA for PARU-
AMETIS and DA for PARDAMETIS) tend to take

longer for the TYPEB problems than they do for Ty-
PEA problems, while the PARPAMETIS (labeled PA)
times are more consistent. This is because localized
imbalances cause diffusion to propagate further on av-
erage than global imbalances. Thus, diffusion algo-
rithms will require more iterations of diffusion in or-
der to become balanced for TYPEB problems than for
TYPEA problems. Hence, the run times are higher.
Computing a new partition from scratch avoids this
problems. Thus, the PARPAMETIS times are not af-
fected by the localized imbalances.

Problem | Partition | a« | UA DA PA

TYPEA | 32-way 5 | 5.469 | 5.529 | 5.134
TypEA | 32-way | 30 | 5.555 | 5.551 | 5.198
TYPEA 64-way 5 | 2.834 | 2.859 | 2.725
TYPEA 64-way | 30 | 2.816 | 2.870 | 2.799
TypeA | 128-way | 5 | 1.546 | 1.602 | 1.791
TyPEA | 128-way | 30 | 1.581 | 1.661 | 1.846
TyrPEB 32-way 5 | 5.568 | 5.488 | 5.079
TyrPEB 32-way | 30 | 5.470 | 5.488 | 5.047
TyPEB 64-way 5 | 2.860 | 2.880 | 2.743
TyPEB 64-way | 30 | 2.930 | 3.029 | 2.758
TyPEB | 128way | 5 | 1.563 | 1.641 | 1.764
TyPEB | 128-way | 30 | 1.895 | 2.059 | 1.817

Table 2: The run times of selected experiments.

3 Conclusion and Related Work

In this paper, we have shown that multilevel diffu-
sion algorithms are generally able to produce signifi-
cantly lower TOTALV and MAXYV results for adaptive
graphs in which either localized or non-localized im-
balances are low in magnitude as well as for graphs
in which high magnitude imbalances occur globally
throughout the grid. This is because the optimal solu-
tion for these problems is relatively near to the initial
partition in the search space. Hence, diffusion, which
attempts to minimize the difference between the origi-
nal partition and the output partition, is a good strat-
egy here. For these classes of problems, diffusive repar-
titioning should be applied a number of times, in order
to keep data migration overhead low, followed by a sin-
gle iteration of partitioning from scratch and remap-
ping the resulting partition. This will allow edge-cut
results to remain low, while minimizing the data mi-
gration overhead.

For the class of problems in which a large amount

of imbalance occurs in localized areas of the graph,
partitioning from scratch and remapping the resulting
partition will result in very low edge-cuts and To-
TALV and MAXV results which are similar to those
obtained by multilevel diffusive schemes. This is be-
cause the optimal solution for these problems is sub-
stantially removed from the initial partition in the
search space. Hence, partitioning from scratch and
intelligent remapping should be followed in favor of
multilevel diffusion for such cases.

References

[1] R. Biswas and L. Oliker. Experiments with reparti-
tioning and load balancing adaptive meshes. Tech-
nical Report NAS-97-021, NASA Ames Research
Center, Moffett Field, CA, October 1997.

[2] R. Biswas and R. C. Strawn. A new procedure
for dynamic adaption of three-dimensional un-
structured grids. Applied Numerical Mathematics,
13:437-452, 1994.

[3] B. Hendrickson and R. Leland. A multilevel algo-
rithm for partitioning graphs. Proceedings Super-
computing 95, 1995.

[4] G.Karypis and V. Kumar. Multilevel k-way parti-
tioning scheme for irregular graphs. Technical Re-
port TR 95-064, Department of Computer Science,
University of Minnesota, 1995.

[5] G. Karypis and V. Kumar. A coarse-grain parallel
multilevel k-way partitioning algorithm. In Pro-
ceedings of the 8th SIAM conference on Parallel
Processing for Scientific Computing, 1997.

[6] L. Oliker and R. Biswas. Plum: Parallel load bal-
ancing for adaptive unstructured meshes. Tech-
nical Report NAS-97-020, NASA Ames Research
Center, Moffett Field, CA, 1997.

[7] K. Schloegel, G. Karypis, and V. Kumar. Multi-
level diffusion schemes for repartitioning of adap-
tive meshes. Journal of Parallel and Distributed
Computing, 47(2):109-124, 1997.

[8] C. Walshaw, M. Cross, and M. G. Everett. Parallel
dynamic graph partitioning for adaptive unstruc-
tured meshes. Journal of Parallel and Distributed
Computing, 47(2):102-108, 1997.

[PARUAMETIS Edgecut I PARUAMETIS TotalV =3 PARDAMETIS Edgecut I PARDAMETIS TotalV —— PARPAMETIS (baseline)

13

1.1 =

09 |- -

08 |- -

0.7 - -

0.6 |- -

05 |- -

IR

Kol 5 Q 5 QS ho) Q QS 5 QS o QS o
& & d P P& & S P & S e L F P &
MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD
32 Processors 64 Processors 128 Processors

Figure 1: Quality in terms of edge-cut and TOTALV of the partitions produced by the multilevel directed and
undirected diffusion algorithms relative to partitioning from scratch followed by intelligent remapping for low
imbalance TYPEA problems. For each graph, the ratio of the edge-cut and TOTALV of the multilevel diffusion
algorithms to that of multilevel k-way partitioning and subsequent greedy remapping is plotted for 32-, 64-, and
128-way partitions on 32, 64, and 128 processors, respectively. Bars under the baseline indicate that the multilevel
diffusion algorithms perform better than the remapping algorithm.

[PARUAMETIS Edgecut I PARUAMETIS TotalV =0 PARDAMETIS Edgecut I PARDAMETIS TotalV —— PARPAMETIS (baseline)
13
12
1.1 H -
1
09 - —
08 —
0.7 —
0.6 - —
05 —
04 —
03 =
02 —
01 —
6 I I I [|
FOE IR O R O R FOE IR RN IR O RN S R R R
MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD
32 Processors 64 Processors 128 Processors

Figure 2: Quality in terms of edge-cut and TOTALV of the partitionings produced by the multilevel directed
and undirected diffusion algorithms relative to partitioning from scratch followed by intelligent remapping for low
imbalance TYPEB problems. For each graph, the ratio of the edge-cut and TOTALV of the multilevel diffusion
algorithms to that of multilevel k-way partitioning and subsequent greedy remapping is plotted for 32-, 64-, and
128-way partitions on 32, 64, and 128 processors, respectively. Bars under the baseline indicate that the multilevel
diffusion algorithms perform better than the remapping algorithm.

[PARUAMETIS Edgecut I PARUAMETIS TotalV =3 PARDAMETIS Edgecut I PARDAMETIS TotalV —— PARPAMETIS (baseline)

18

16

1.4

12 | H -
1 il

08 -
06 -
04
A
0
&Q

° N M o N N o] M N o D o o o] N S D N N N

& @ F P @ F P P & & & & & @ P I G & P

MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD
32 Processors 64 Processors 128 Processors

Figure 3: Quality in terms of edge-cut and TOTALV of the partitionings produced by the multilevel directed and
undirected diffusion algorithms relative to partitioning from scratch followed by intelligent remapping for high
imbalance TYPEA problems. For each graph, the ratio of the edge-cut and TOTALV of the multilevel diffusion
algorithms to that of multilevel k-way partitioning and subsequent greedy remapping is plotted for 32-, 64-, and
128-way partitions on 32, 64, and 128 processors, respectively. Bars under the baseline indicate that the multilevel
diffusion algorithms perform better than the remapping algorithm.

[PARUAMETIS Edgecut B PARUAMETIS TotalV =0 PARDAMETIS Edgecut I PARDAMETIS TotalV —— PARPAMETIS (baseline)

18

16 -

1.4 4

12 [
1 I |
0.8
0.6 -
04 |
02
° S O © S S S &
kd kd kg > kg
B D MRNG!

N N D o N N N N D o N N N N S\ N O
& @ & @ F ¥ P & & @ & & @ & @ & @
MRNG MRNGC MRNG! B MRNGC MRNGD MRNG MRNGC MRNG!
32 Processors 64 Processors 128 Processors

Figure 4: Quality in terms of edge-cut and TOTALV of the partitionings produced by the multilevel directed and
undirected diffusion algorithms relative to partitioning from scratch followed by intelligent remapping for high
imbalance TYPEB problems. For each graph, the ratio of the edge-cut and TOTALV of the multilevel diffusion
algorithms to that of multilevel k-way partitioning and subsequent greedy remapping is plotted for 32-, 64-, and
128-way partitions on 32, 64, and 128 processors, respectively. Bars under the baseline indicate that the multilevel
diffusion algorithms perform better than the remapping algorithm.

[PARUAMETIS MaxV BBl PARDAMETIS MaxV —— PARPAMETIS (baseline)

11

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

5O DD O 5O DO O 5O DD 5O DO DO DD © 5O DD O 5O DO O 5O DD DO ©
FELPIR I ESPEL FELLLL FELPE PRI ELPEL I ELPEL I EPPEP I ELPL P I ELPLP S
MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD

32 Processors 64 Processors 128 Processors

Figure 5: Quality in terms of MAXV of the partitionings produced by the multilevel directed and undirected
diffusion algorithms relative to partitioning from scratch followed by intelligent remapping for TYPEA problems.
For each graph, the ratio of the MAXV produced by the multilevel diffusion algorithms to that of multilevel k-way
partitioning and subsequent greedy remapping is plotted for 32-, 64-, and 128-way partitions on 32, 64, and 128
processors, respectively. Bars under the baseline indicate that the multilevel diffusion algorithms perform better
than the remapping algorithm.

[PARUAMETIS MaxV BB PARDAMETIS MaxV —— PARPAMETIS (baseline)

11

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PO OO OOD O I DO © OO I LIS O L H OO O ORI LOOD O L H OO ®
FELPER I ELPEL FELLLL FELPIPR I CLPEL I PP PEF I PP PEL I ELLL L I ELPL S
MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD MRNGB MRNGC MRNGD
32 Processors 64 Processors 128 Processors

Figure 6: Quality in terms of MAXV of the partitionings produced by the multilevel directed and undirected
diffusion algorithms relative to partitioning from scratch followed by intelligent remapping for TYPEB problems.
For each graph, the ratio of the MAXV produced by the multilevel diffusion algorithms to that of multilevel k-way
partitioning and subsequent greedy remapping is plotted for 32-, 64-, and 128-way partitions on 32, 64, and 128
processors, respectively. Bars under the baseline indicate that the multilevel diffusion algorithms perform better
than the remapping algorithm.

